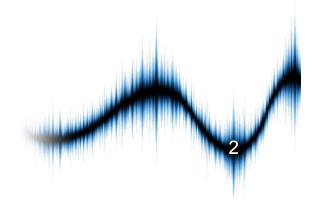


Energiesysteme im Umbruch

OVE-Bestimmungen und Services


Ing. Walter Hauer

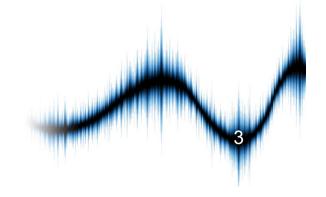
November 2012

Inhalt

- Normung Strategische Bedeutung
- Die Welt der Normung
- IEC CENELEC OVE
- Die rechtliche Bedeutung Verbindlichkeit
- Erneuerbare Energien (Normen)
- Anlagenerrichtung

Normung – Strategische Bedeutung

Ziele der Normung


- Kompatibilität von Produkten
- genormte Kommunikation
- Abbau von Handelshemmnissen
- Absicherung der Interessen

Aspekte der Normung

- Erhöhung der Sicherheit
- Erhöhung der Funktionalität
- wirtschaftlicher Nutzen

Wesen der Normung

- Normung basiert auf Konsens
- Normen sind jedoch nie neutral → reflektieren Position des Stärkeren
- Nichtteilnahme = "Ruder abgeben" + Anschluss verlieren
 - Normung ist ein strategisches Element
 - Normung ist "Chefsache"

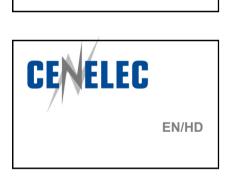
Die Welt der Normung

europäische internationale Ebene

Ebene

Ebene

Elektrotechnik


IEC

Telekommunikation übrige Bereiche

Recommendations

Bluetooth

Andere:

nationale

ÖNORM

Kenndaten

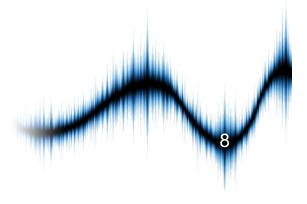
- gegründet 1906, Sitz in Genf, ca. 100 Mitarbeiter
- □ 175 TC/SC, 442 WG, 215 PT, 512 MT (2011-12-31)
- Σ 6513 Publikationen (2011-12-31) (ca. 5800 IEC Standards)
- Time to market: großteils < 2 Jahre (durchschnittlich 34 Monate)
- 82 Mitgliedsländer
 (60 Vollmitglieder)

- gegründet 1973, Sitz in Brüssel, ca. 80 Mitarbeiter (mit CEN)
- 75 TC/SC, 268 WG
- Σ 6004 Standards (EN & HD)
- 33 Mitgliedsländer (+13 Affiliates)
- 72 % ident mit IEC
- 7 % basieren auf IEC
- 21 % "homegrown" 2011-12-31

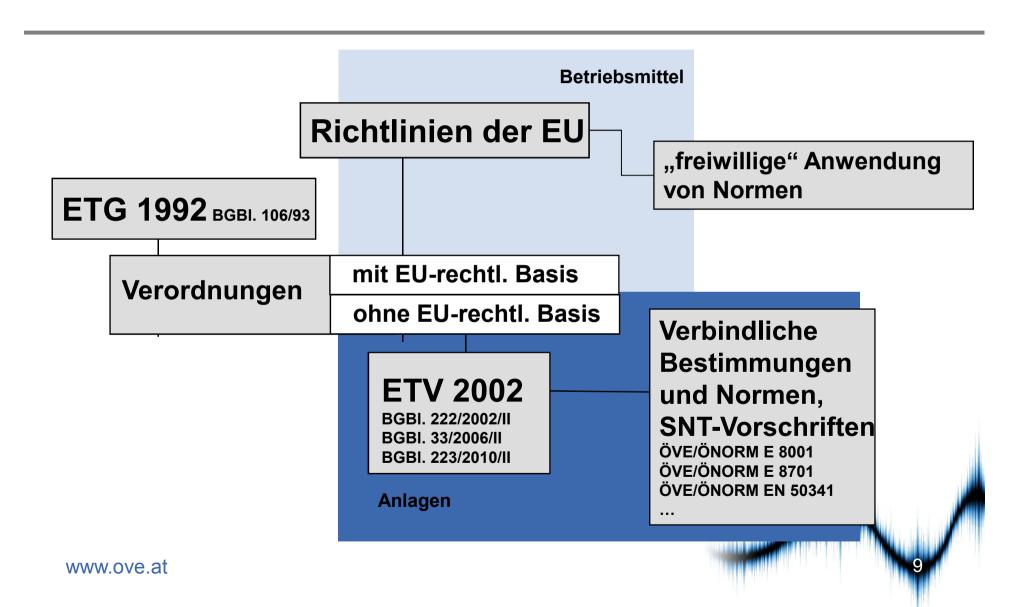
www.ove.at

Österreichischer Verband für Elektrotechnik

- gegründet 1883
- erste elektrotechnischeBestimmung 1889
- Private Non-Profit Organisation mit ca. 2500 Mitgliedern
- Aufgaben: Interessenvertretung,Normung und Zertifizierung
- > 39 Mitarbeiter

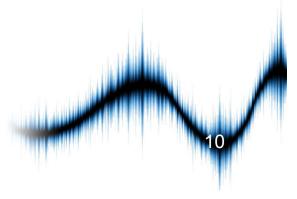


Österreichisches Elektrotechnisches Komitee – OEK



- 110 Fachgremien (TK, TSK, AG)
- es werden 175 IEC-Komitees und 75 CENELEC-Komitees gespiegelt
- 700 Experten
- 5700 Österreichische Bestimmungen für die Elektrotechnik (ÖVE/ÖNORMEN)
- 9 Mitarbeiter
- hoher Eigenfinanzierungsgrad durch Normenverkauf
- Marktüberwachung im Auftrag BMWFJ

Rechtliche Bedeutung



Normanwendungen für erneuerbare Energie

- Wasserkraft TC 4
- Photovoltaik TC 82
- Windenergie TC 88
- Meeresenergie TC 114
- Solarthermische Anlagen TC 117
- Elektrofahrzeuge Ladestationen TC 69

Wasserkraft

- ÖVE EN 60041:1994 Abnahmeversuche zur Bestimmung der hydraulischen Eigenschaften von Wasserturbinen, Speicherpumpen und Pumpturbinen
- ÖVE EN 60609:1995 Wasserturbinen, Speicherpumpen, Pumpenturbinen – Bewertung des Kavitationsangriffs
- ÖVE EN 61116:1994 Anleitung für die elektromechanische Ausrüstung von kleinen Wasserkraftanlagen
- ÖVE EN 61362:1998 Leitfaden zur Spezifikation der Regelungssysteme für hydraulische Turbinen

Photovoltaik

- ÖVE/ÖNORM EN 61215:2006 Terrestrische kristalline Silizium-Photovoltaik-(PV-) Module – Bauarteignung und Bauartzulassung
- ÖVE/ÖNORM EN 61646:2009
 Terrestrische Dünnschicht-Photovoltaik (PV)-Module Bauarteignung und Bauartzulassung
- ÖVE/ÖNORM E 8001-4-712:2009
 Errichtung von elektrischen Anlagen mit
 Nennspannungen bis AC 1000 V und DC 1500
 Teil 4-712: Photovoltaische Energieerzeugungs anlagen Errichtungs- und
 Sicherheitsanforderungen

Windenergie

- ÖVE/ÖNORM EN 61400-1:2011
 Windenergieanlagen –
 Teil 1: Auslegungsanforderungen
- ÖVE/ÖNORM EN 61400-2:2007
 Windenergieanlagen –
 Teil 2: Sicherheit kleiner Windenergieanlagen
 Diese Norm gilt für Windenergieanlagen, deren vom Rotor

überstrichene Fläche kleiner als 200 m² ist und die eine Spannung unter 1 000 V Wechselspannung oder 1 500 V Gleichspannung erzeugen.

Meeresenergie und Solarthermische Anlagen

Meeresenergie – Wellen- und Gezeiten-Umformer
 IEC/TS 62600-100: Marine energy – Wave, tidal and other water current converters
 – Part 100: Power performance assessment of electricity producing wave energy converters

114/96/CD – IEC/TS 62600-101: Marine energy – Wave, tidal and other water current converters – Part 101: Wave energy resource assessment and characterization

114/82/CD – IEC/TS 62600-200: Marine energy – Wave, tidal and other water current converters – Part 200: Power performance assessment of electricity producing tidal energy converters

114/71/CD – IEC/TS 62600-201: Marine energy – Wave, tidal and other water current converters – Part 201: Tidal energy resource assessment and characterization

Solarthermische Anlagen (wurde erst 2011 neu gegründet)

Anlagenerrichtung I

- Niederspannungsanlagen ÖVE/ÖNORM E 8001: Errichtung von elektrischen Anlagen mit Nennspannungen bis AC 1000 V und DC 1500 V
- Hochspannungsanlagen ÖVE/ÖNORM E 8383:2000 – Starkstromanlagen mit Nennwechselspannung über 1 kV (verbindlich durch ETV)

ÖVE/ÖNORM EN 61936-1:2011 – Starkstromanlagen mit Nennwechselspannungen über 1 kV – Teil 1: Allgemeine Bestimmungen ÖVE/ÖNORM EN 50522:2011 – Erdung von Starkstromanlagen mit Nennwechselspannungen über 1 kV

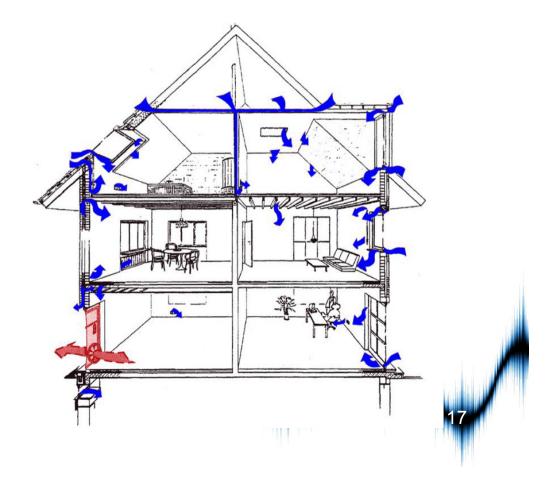
www.ove.at

Anlagenerrichtung II - Freileitungen

ÖVE-L 1:1981
 Errichtung von Starkstromfreileitungen bis 1000 V

 ÖVE/ÖNORM EN 50423:2005 (OVE R 1)
 Freileitungen über AC 1 kV bis einschließlich AC 45 kV

ÖVE/ÖNORM EN 50341:2011
 Freileitungen über AC 45 kV –
 Teil 1: Allgemeine Anforderungen –
 Gemeinsame Festlegungen


Effiziente Nutzung von Energie

OVE-Richtlinie R 7:2011

Luftdichte Gebäudehülle – Richtlinien für die

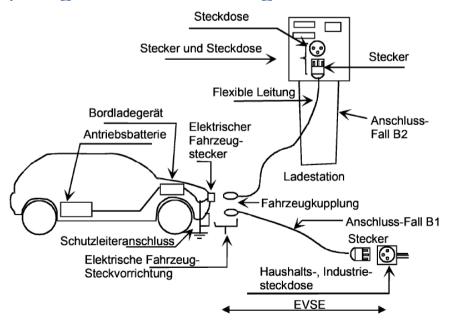
Elektroinstallation

Die OVE-Richtlinie – Unser Service für den schnellen Marktzugang

- OVE-Richtlinie R 1:2011 Freileitungen über AC 1 kV
- OVE-Richtlinie R 2:2010 Einbruch- und Überfallmeldeanlagen
- OVE-Richtlinie R 3:2009 Sicherheitsanforderungen an elektrotechnische Labors in Schulen
- OVE-Richtlinie R 4:2010 Graphische Symbole für Schaltpläne
- OVE-Richtlinie R 5:2010 Bedienen und Erhalten des ordnungsgemäßen Zustandes von elektrischen Anlagen durch Laien
- OVE-Richtlinie R 6:2011 Blitzschutz für besondere bauliche Anlagen
- OVE-Richtlinie R 7:2011 Luftdichte Gebäudehülle Richtlinien für die Elektroinstallation
- OVE-Richtlinie R 8:2012 Leitfaden für die Beschaffung und den Betrieb von Medizinprodukten in IT-Netzwerken
- OVE-Richtlinie R 9:2012 Alarmanlagen CCTV-Überwachungsanlagen für Sicherungsanwendungen

18

Elektrofahrzeuge – Ladestationen



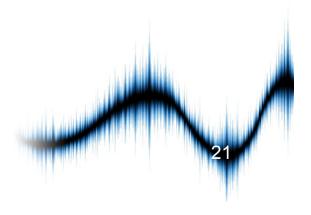
ÖVE/ÖNORM EN 61851-1:2012
 Elektrische Ausrüstung von Elektro-Straßenfahrzeugen –
 Konduktive Ladesysteme für Elektrofahrzeuge –
 Teil 1: Allgemeine Anforderungen

ÖVE/ÖNORM EN 62196:2012

Stecker, Steckdosen, Fahrzeugkupplungen und Fahrzeugstecker –

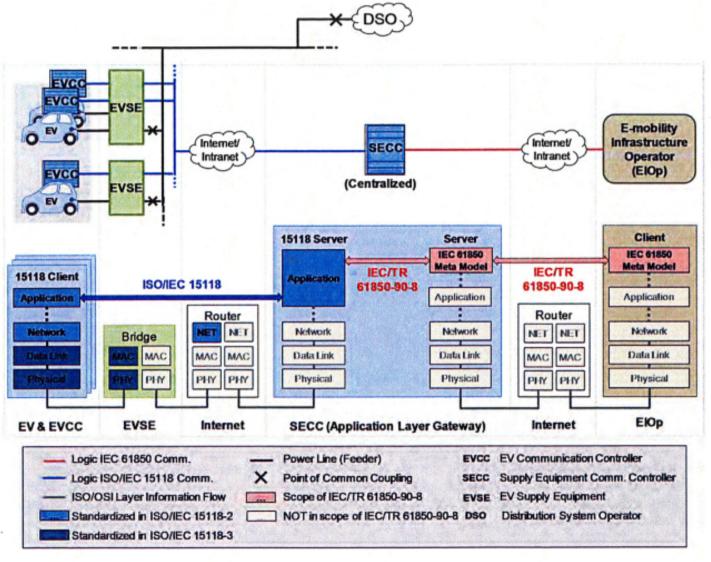
Konduktives Laden von Elektrofahrzeugen

Kommunikation von DER mit dem Netz


Zukünftig wird das Netz neben der energietechnischen Verbindung auch eine Datenverbindung benötigen, um die Stabilität des Netzes mit hoher dezentraler Einspeisung zu gewährleisten

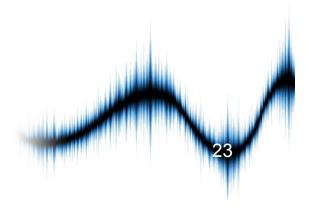
- Kommunikationsnetze und -systeme für die Automatisierung in der elektrischen Energieversorgung werden unter anderen in der Normenreihe IEC 61850 geregelt
- Entwurf IEC TR 61850-90-7: Communication networks and systems for power utility automation - Part 90-7: IEC 61850 object models for photovoltaic, storage and other DER inverters (TC 57)

Elektrofahrzeuge – Ladestationen



- Entwurf ISO /IEC 15118 Teil 1 bis Teil 3
 Kommunikation zwischen Elektrofahrzeug und Ladestation - Netz
 - General information and use-cases
 - Technical protocol description and open system interconnection
 - Physical and data link layer requirements
- Entwurf IEC TR 61850-90-8 Communication networks and systems for power utility automation – Part 90-8: Objekt models for electric mobility
 - TC 57: Power Systems Management

Kommunikation – Vehilce to grid


www.ove.au

Quelle: Entwurf IEC TR 61850-90-8

Elektrofahrzeuge – Ladestationen

- Entwurf IEC 61851-21-1: Electric vehicle conductive charging systems Part 21-1: Electric vehicle onboard charger EMC requirements for conductive connection to an a.c./d.c. supply
- Entwurf IEC 61851-21-2: Electric vehicle conductive charging systems Part 21-2: EMC requirements for OFF board electric vehicle charging systems

