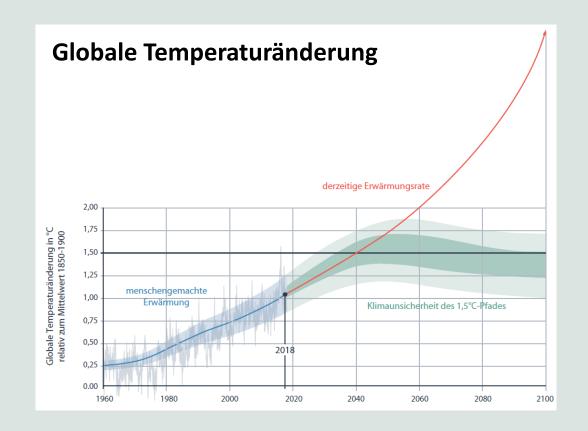
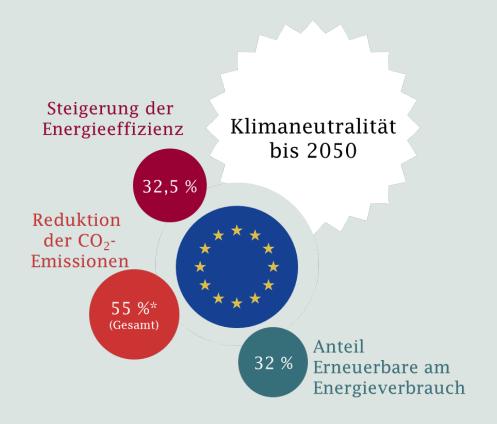
ENERGIESYSTEME IM UMBRUCH: AUSBAUSCHWERPUNKT PHOTOVOLTAIK

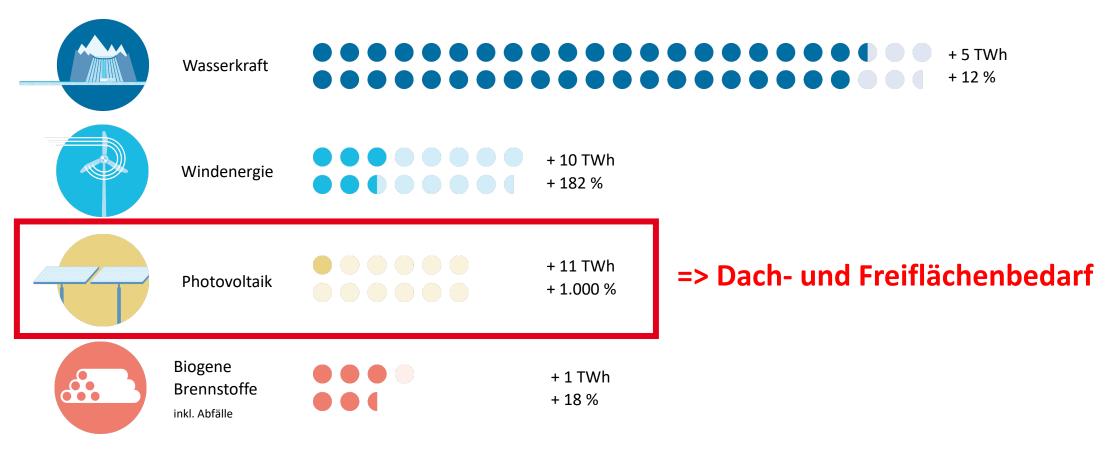
Brigitte Bach


11.10.2021


PARISER KLIMAKONFERENZ 2015

- Ziel: Begrenzung des weltweiten
 Temperaturanstieg deutlich unter 2°C (Ziel: 1,5°C) im Vergleich zum vorindustriellen Zeitalter
- Ab 2050 Gleichgewicht zwischen
 Treibhausgasemissionsausstoß und Abbau dieser
- Länder müssen nationale Aktionspläne für die Reduzierung ihrer Emissionen vorlegen
- › Überprüfung der Aktionspläne findet alle 5 Jahre statt

KLIMA- UND ENERGIEZIELE BIS 2030



*European Green Deal Ziel

Quelle: BMNT, 2019

WOHER DER ERNEUERBARE STROM BIS 2030 KOMMEN MUSS

PHOTOVOLTAIK FÜR DAS DACH ODER DIE FREIFLÄCHE

Dachanlagen

Frei- und Agrarflächenanlagen

Quelle: Dachfläche: https://www.haus.de/sites/default/files/styles/5 3 3 spalten desktop/public/2017-06/Fotolia-86509638-XXL 7540.jpg?h=bfa41935&itok=UAyu3S1B; Freifläche: https://enery.energy/en/2021/05/13/freiflaechenanlagen-unter-beschuss-was-ist-fakt-was-ist-fake/

VOM THEORETISCHEN ZUM SOZIO-ÖKONOMISCHEN POTENZIAL AUF DACHFLÄCHEN

Statik und andere gebäudetechn. Faktoren

> Flächenkonkurrenz (Begrünung, Solarthermie etc.)

- Denkmalschutz
- Geplante Dachausbauten

 Eigendeckungsvorrang bzw. niedrige Einspeisetarife

- Geringe Investitionsförderung
- Hohe Netzanschlusskosten
- Niedriger Strompreis

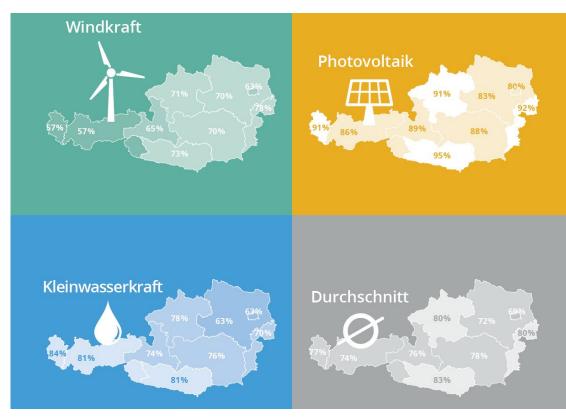
Mangelnde Ästhetik

- Komplexität der Umsetzung
- Mangelndes Wissen, Ängste
- Ökologische Bedenken
- MiteigentümerInnen nicht überzeugt

	theoret./physik. Potential			techn. Potenzial			wirtsch. Potenzial			soz./ökol. Potenzial	
	Österreich	Salzburg	Abschich-	Österreich	Salzburg	Abschich-	Österreich	Salzburg	Abschich-	Österreich	Salzburg
			tungsfaktor			tungsfaktor			tungsfaktor		
EFH/ZFH	6,1	0,3	10%	5,49	0,29	55%	2,47	0,13	50%	1,24	0,07
MFH	1,7	0,1	30%	1,19	0,09	10%	1,07	0,08	50%	0,54	0,04
Industrie/Gewerbegebäude	7,9	0,6	38%	4,90	0,37	25%	3,67	0,28	50%	1,84	0,14
Fassaden	2,9	0,2	30%	2,03	0,14	50%	1,02	0,07	50%	0,51	0,03
GESAMT	18,6	1,26	-	13,61	0,90	-	8,23	0,56	-	4,12	0,28

Nur ca. 22 Prozent des theoretischen PV-Potentials auf Dächern sind realistisch realisierbar.

Auf Dach- und Fassadenflächen in Österreich ergibt sich daher ein realisierbares Potential bis 2030 von 4,12 TWh.


PV-DACHFLÄCHENPOTENZIAL IN SALZBURG

- > Zum Erreichen des 2030 PV-Ziels in Salzburg müssen bei gleichbleibender durchschnittlicher Anlagengröße (12,5 kW) zumindest **6.000 Dachanlagen pro Jahr** errichtet werden
 - > entspricht ungefähr 1er Anlage alle 90 Minuten
 - > aktuell werden im Jahresschnitt ca. 1.200 Anlagen errichtet
 - › die volle Ausschöpfung des Dachflächenpotenzials würde die Verstärkung von ca. 25% der 5.600 Trafostationen bedeuten.
- Schlussfolgerung: das EAG Ziel ist bis 2030 allein mit Dachflächen-Anlagen nicht zu schaffen!
 - > Freiflächen-Anlagen müssen entsprechend berücksichtigt und unterstützt werden!
- > Erwartet wird, dass bis 2030 ca. 300 MW an PV-Anlagen auf Dächern hinzukommen
 - Verdopplung der heutigen jährlichen Ausbaurate
 - Nahezu Verdreifachung der installierten Leistung

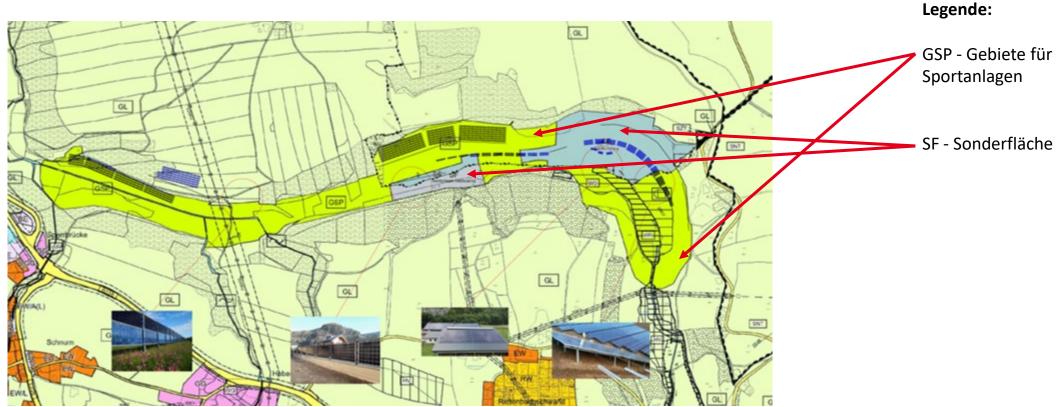
FREIFLÄCHEN ERFOLGSFAKTOREN - DER GRUNDEIGENTÜMER UND DIE GESELLSCHAFTLICHE AKZEPTANZ

- > Interessen der Grundeigentümer sehr individuell:
 - derzeitige Nutzung der Flächen und Bewirtschaftungsform
 - y geplante zukünftige Nutzungen
 - > Flächenertrag (landwirtschaftlich, aber auch monetär)
 - Persönliche Lebenssituation und Umfeld
- Gesellschaftliche Akzeptanz:
 - grundsätzlich wird Photovoltaik in der Öffentlichkeit als eine der zukunftsträchtigsten Energieerzeugungsformen gesehen und hat im österreichweiten Durchschnitt den höchsten Akzeptanzwert unter den Erneuerbaren von 88%

Quelle: Erneuerbare Energien in Österreich (Alpen-Adria-Universität Klagenfurt; WU Wien; Deloitte Österreich; Wien Energie), 2020

GRUNDSÄTZLICHE ZIELE DER SALZBURG AG UND ALLGEMEINE RAHMENBEDINGUNGEN

- > Dachflächen werden realisiert, sowohl zur Nutzung der selbst erzeugten Energie durch den Flächeneigner, als auch zur Einspeisung des Überschussstroms.
- > Solar.Kraftwerke werden nicht nur auf "qualifizierten" Freiflächen, wie z.B. Deponieflächen, Altlasten, Verkehrsflächen (Bahnstrecken, Autobahn) entwickelt, sondern bewusst auch landwirtschaftlich genutzte Flächen vorangetrieben.
- › Auch die Freiflächenverfügbarkeit im Bundesland Salzburg aufgrund der Topografie begrenzt. Die Mehrfachnutzung von Flächen (Agrar-PV) steht im Vordergrund, um den Flächendruck zu minimieren.
- Die Salzburg AG will dabei den Beweis antreten, dass Projekte zur Energieerzeugung auch Hand in Hand mit den Interessen der Landwirtschaft, Raumordnung und Naturschutz möglich sind.
- › Der Flächeneigentümer und die Region werden dabei als Partner betrachtet und frühzeitig eingebunden.
- Solche gesamtheitlichen Lösungen bedürfen auch einer fachlich geführten, gesellschaftspolitischen Diskussion.


SOLAR.KRAFTWERKE

Das Salzburger Raumordnungsrecht als Herausforderung für eine zeitnahe, rechtsichere Projektrealisierungen

BEISPIEL – SALZBURG RING (1/3)

- > Jahreserzeugung: bis zu ca. 7 MWh (in mehren Ausbaustufen möglich)
- > Das EAG verweist speziell auf Verkehrsflächen.
- Die elektrische Energie kann sofort am Standort für E-Mobilität verwendet werden.

BEISPIEL – SALZBURG RING (2/3)

BEISPIEL – SALZBURG RING (3/3)

- Das Projekt wäre zeitnah zur Genehmigung einreichfähig. Es kann jedoch nicht abschließend beurteilt werden, solange die Widmungsvoraussetzungen nicht geschaffen wurden.
- ➤ Aktuelle Widmungen: Grünland Gebiete für Sportanlagen (GSP) gem. Sbg. ROG §36 Abs. 1 Z 5 und Sonderflächen gem. Sbg. ROG §34 Abs. 1
- Erforderliche Widmung: Grünland Solar (GSA) gem. Sbg. ROG §36 Abs. 1 Z 14a

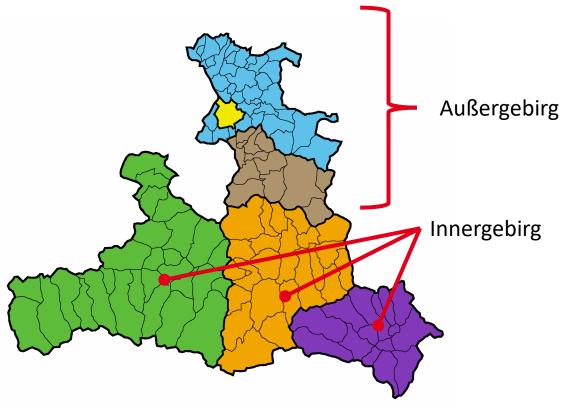
Problemstellung:

Es können derzeit nur kleinere gewidmete Sonderflächen mit PV-Anlagen bebaut werden. Die restlichen Flächen benötigen eine Widmung GSA, obwohl diese überwiegend gleich genutzt werden.

Lösungsansätze:

- > a. Widmung des gesamten Areals als Sonderfläche
- ➤ b. temporäre Widmung GSA unter der Geländeoberkante weiterhin GSP und über Geländeoberkante eine **temporäre Widmung GSA**. Temporäre Widmungen sind für GSA derzeit nicht bzw. nur auf 10 Jahre befristet möglich.

HERAUSFORDERUNGEN BEI DER NETZEINBINDUNG


AUSBAUSCHWERPUNKT PV HERAUSFORDERUNGEN BEI DER NETZEINBINDUNG

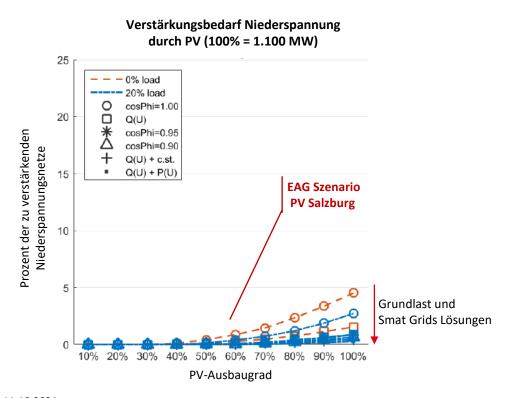
Die Herausforderungen sind von der Ausgangslage abhängig

Beispiel: Versorgungsgebiet Salzburg Netz GmbH

Die regionale Verteilung der bestehenden Erzeugung mit dem Schwerpunk Wasserkraft ist topografisch bedingt sehr unterschiedlich:

- Region "Innergebirg" (Bezirke Pongau, Lungau und Pinzgau) ist der Erzeugungsschwerpunkt
- Region "Außergebirg" (Stadt Salzburg, Flachgau und Tennengau) weist eine typische Lastcharakteristik auf
- Integration Erneuerbarer bringt "Innergebirg" einen höheren Netzausbaubedarf mit sich als "Außergebirg"
- Im städtischen Bereich kann durch die höhere Lastdichte eine größere Anzahl von PV-Anlagen integriert werden

¹ Stand 1.1.2021, gerundet


² durchschnittliche Werte der letzten Jahre

STRATEGISCHE NETZENTWICKLUNG ERKENNTNISSE AUS SMART GRIDS PROJEKTEN

Netzverstärkungsbedarf in der Niederspannung in Abhängigkeit der PV Durchdringung

> 100% PV-Ausbaugrad entspricht 1.100 MW zusätzlich installierter PV-Leistung

- AusgangssituationVerkabelungsgrad ca. 97%
- > PrämisseZufällige Gleichverteilung von Dachflächenanlagen
- Gleichzeitigkeit 0,85 (ausrichtungsbedingt)
- Unsicherheit
 Größere Anlagen, z.B. Freiflächenanlagen

Die Beachtung der Grundlast und der Einsatz von Smart Grids Lösungen reduzieren den Ausbaubedarf in der Niederspannung

STRATEGISCHE NETZENTWICKLUNG ERKENNTNISSE AUS SMART GRIDS PROJEKTEN

EAG Szenario PV Salzburg

Grundlast und

Smat Grids Lösungen

Netzverstärkungsbedarf in der Niederspannung in Abhängigkeit der PV Durchdringung im Vergleich zur E-Mobilität

- 100% PV-Ausbaugrad entspricht
- 1.100 MW zusätzlich installierte PV-Leistung

0% load

Q(U)

- 20% load

cosPhi=1.00

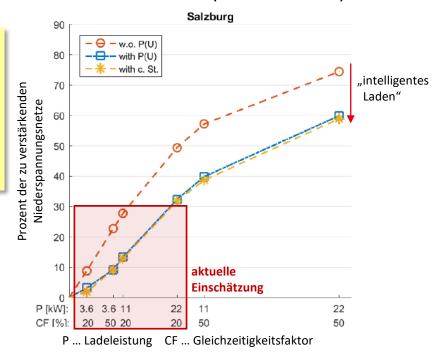
cosPhi=0.95

Q(U) + c.st.Q(U) + P(U)

Verstärkungsbedarf Niederspannung

durch PV (100% = 1.100 MW)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%


PV-Ausbaugrad

Die Integration der Elektromobilität ins Verteilernetz ist die bestimmende Größe

der nächsten Jahre

200.000 Elektrofahrzeugen (ca. 2/3 des Bestands)

Verstärkungsbedarf Niederspannung durch E-Mobilität (100% = 200.000 PKW)

Prozent der zu verstärkenden Niederspannungsnetze

25

20

ZUSAMMENFASSUNG

- > Um die Dekarbonisierungsziele zu erreichen, müssen **erneuerbare Energieerzeugungsanlagen** in Österreich **massiv ausgebaut werden**. Ein sehr wichtiger Bestandteil dafür sind PV Anlagen, bis 2030 soll 12TWh des benötigten Stroms so produziert werden.
- > Es müssen **Dach- sowie Freiflächenanlagen** berücksichtigt werden. Dazu ist die **gesellschaftliche Akzeptanz** sowie eine **Erleichterung der rechtlichen Rahmenbedingungen** für den Bau von Anlagen **unumgänglich**.
- Durch die Errichtung von dezentralen Anlagen und die angestrebte Elektrifizierung muss auch die Netzinfrastruktur massiv ausgebaut werden.
- > E-Mobilität wird zur bestimmenden Größe für den Verteilernetzausbau, der Netzausbaubedarf ist auch wesentlich von der (verursachungsgerechten) Tarifgestaltung beeinflusst.
- > Es sind "intelligente Lösungen" und Investitionen erforderlich um Versorgungssicherheit und -qualität auch künftig zu gewährleisten.

#DURCHSTARTER:INAUSBILDUNG/BERUFSEINSTIEG

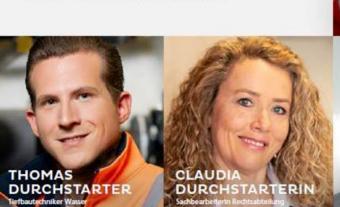
- › Praktika für Schüler:innen und Studierende
 - Über 100 Praktikumsplätze jährlich
 - › Bewerbungsfrist für Ferialpraktika im Dezember
- > Begleitung von Diplom- und Abschlussarbeiten
- > Traineeprogramme für Maturant:innen und Akademiker:innen
- › Direkteinstieg über ausgeschriebene Jobs oder Initiativbewerbung

Was brauchst du dafür?

- **⊠**Lebenslauf
- **⊠**Motivationsschreiben
- **⊠**Zeugnisse

Jetzt online bewerben und durchstarten!

www.salzburg-ag.at/jobs


DURCHSTARTER

JONATHAN

DURCHSTART

#durchstarter:in

Arbeiten im Team der Salzburg AG; So spannend kann durchstarten sein! Denn als starker, innovativer Arbeitgeber bieten wir allen Mitarbeiterinnen und Mitarbeitern die Möglichkeit, die Zukunft Salzburgs 365 Tage im Jahr aktiv mitzugestalten, salzburg-ag.at/durchstarter:in

