

GLEICHSTROM

die wiedererkannte Technik?

Friederich Kupzog
Center for Energy
Head of Competence Unit Electrical Energy Systems

MOTIVATION

Warum MV/LV Gleichstromtechnik?

- Steigende Spannungsfestigkeit von Leistungselektronik-Komponenten
- Systemkopplung erneuerbarer Energien vereinfachen
- Energieeffizienz steigern, z.B. in Energiegemeinschaften, Ladeinfrastruktur für E-Fahrzeuge, industrielle Energieversorgungen
- DC-Systeme erlauben h\u00f6here Spannungen als AC-Systeme
- · HVDC inzwischen weit verbreitet, Vermaschung aufkommend
- MV/LV-DC-Anwendungen in der Automatisierungstechnik, der Elektromobilität und der Energieversorgung

DC@AIT



Forschung und Umsetzung

Elektromobilität, MV und LV AC/DC Hybridnetze, Umrichter

Labors

Hochstrom, Hochspannung, SmartEST, Leistungselektronik Projekt ADC Labs mit TU Graz, siehe E&I 8/2020 DC Prüfinfrastruktur

AIT DC Lab

Gremien und Netzwerke

CIRED Working Group 2019-1 DC distribution networks (Convener gerhard.jambrich@ait.ac.at)
OVE DC Initiative (gemeinsam mit TU Graz, TU Wien, FH OÖ, Industrie, Netzbetrieb)

Testing of DC Chargers

Hybrid DC/AC LV Networks

High Power DC Testing

Power Electronics Laboratory

H2020 Projekt HYPERRIDE

Überblick

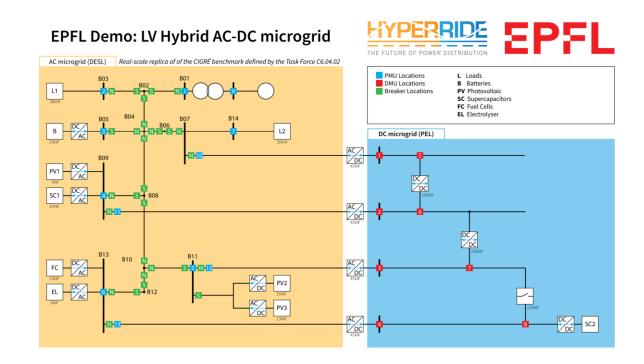
DC – AC/DC Hybridverteilnetze für eine modulare, resiliente Netzentwicklung mit hohem Anteil and Erneuerbaren (Mittel- und Niederspannung)

- Programme "A single, smart European electricity grid", Innovation Action (IA)
- Laufzeit 4 Jahre (10/2020 09/2024)
- 7 Mio Euro Förderung

Bereitstellung von drei (virtuell verbundenen) Demonstrationen

- EPFL Campus (Schweiz),
- RWTH Aachen Campus (Deutschland)
- Verteilnetz ASM TERNI (Italien)

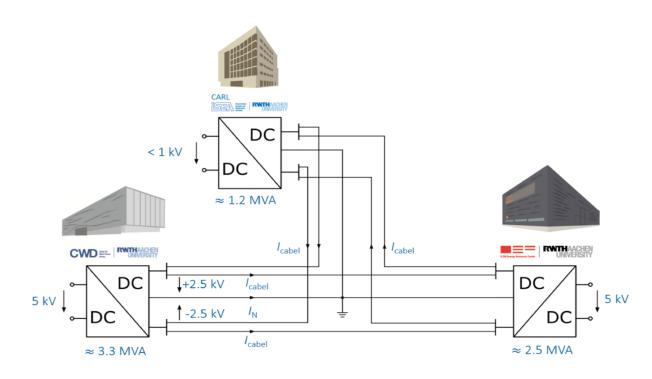
Projektziele



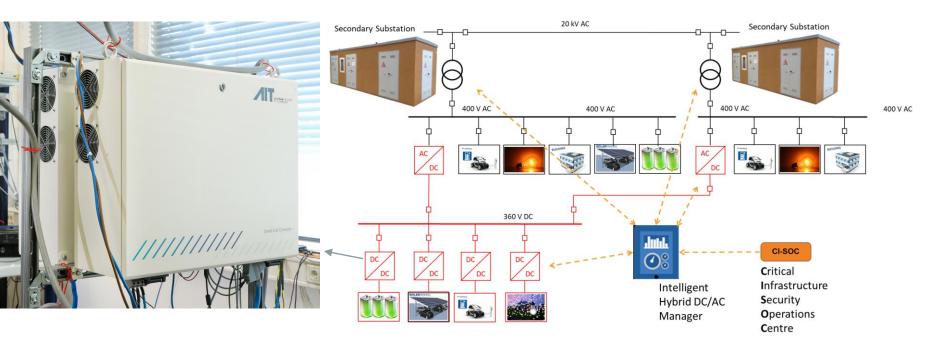
- 1. Planungs-, Betriebs- und Automatisierungslösungen (Betrieb am und getrennt vom allgemeinen AC Netz)
- 2. Entwicklung von Schlüsseltechnologien (MVDC Leistungsschalter und Sensoren, DC Messeinheiten, offene interoperable IKT Platform, Prüf- und Validierungsservices)
- 3. Fehlermanagement und Cybersecurity Lösungen (Schutzkoordination, Stabilitätsbeurteilung, automatische Netzrekonfiguration)
- 4. Technologiedemonstration (Ziel techn. Entwicklungsgrad 5-8)
- **5. Techno-ökonomische Analysie** & Wissenstransfer, Empfehlungen für Normungsgremien/Regulierungsbehörden

Demo 1 | EPFL campus (Lausanne, Schweiz)

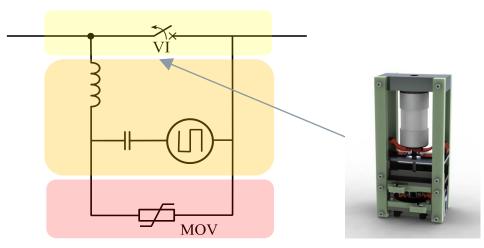
- Verbindung CIGRE 15-Knoten 400 Vac Netz DES Lab und MV LVDC PE Lab
- MVDC bis 10 kVdc und 4 LVDC Schienen bis 1500 Vdc, 1000 A
- LVAC Anwendungen: PV,
 Batteriespeicher, EV-Laden,
 Brennstoffzelle,
 Superkondensator, Elektrolyseur,
 H2-Speicher, Wärmepumpe
- DC Meßeinheiten, optimierte Regelungen, adaptive Abzweigrekonfiguration, Schutzkoordination, Stabilitätsbewertung



Demo 2 | RWTH Aachen Campus (Deutschland)


- 5 kV(±2,5 kV) MV LVDC Umrichter im MW-Bereich, 5 km MVDC Kabel
- Windkraft Prüfstand (4 MW turbine), Active Front End Umrichter
- beinhaltet MVDC Leistungsschalter und Sensoren
- Potentielle LV Anwendungen: PV, Batteriespeicher and EV-Schnellladestationen (380-1000 Vdc)
- DC Messeinheiten, Lastflussoptimierung, Fehlerdetektion und -lokalisierung

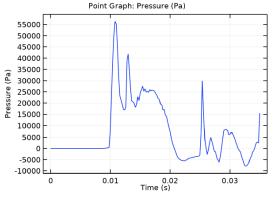
Demo 3 | LV Verteilnetz Terni (Italien)



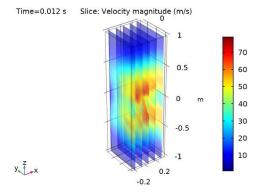
MVDC Leistungsschalter (SCiBreak, EATON)

WP03 – Schlüsseltechnologien für ACDC Hybridnetze

Prototyp für 40 kV wiederkehrende Schaltspannung (SCiBreak, 10 kA, <3 ms, 2.2 x 1.7 x 1.6 m, 800 kg)


- Entwicklung von untraschnellen 5 kV (Demo Aachen) und 14kV DC Leistungsschaltern mit Vakuumschaltröhren
- Aktuator mit Thomson-Spule: ca. 1-2 ms (öffnen)

DC Lichtbogen Simulation und Validierung



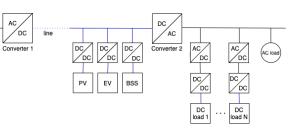
- Komplexe Lichtbogenphysik in Schaltanlagen
- Simulation und Abgleich mit Laborversuchen

TECHNO-ÖKONOM. PLANUNGSTOOL für AC/DC Hybridnetze in der Niederspannung

- Techno-ökonom, Ansatz
- Modulare Simulation
- Synthetisches Netzmodel
- LV Abzweige in AC / DC Betrieb (parallele Hybridisierung)
- Simulation mit PowerFactory (gesteuert über Python API)
- Last-Profile mit 15min Auflösung (echte Lastdaten)
- Statische Lastmodelle für EV and PV

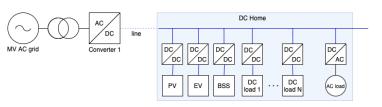
TECHNO-ÖKONOM. PLANUNGSTOOL für AC/DC Hybridnetze in der Niederspannung

Szenario 1a:


- DC Abzweige
- AC Kunden

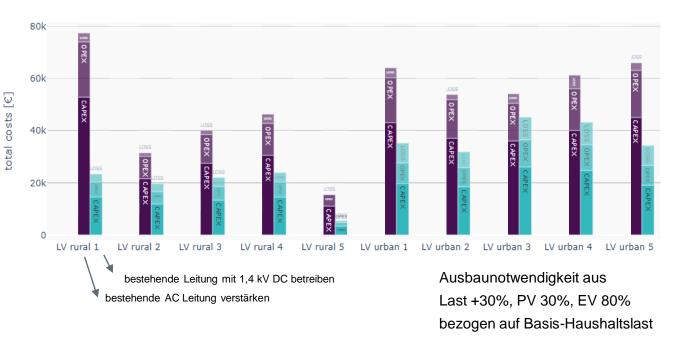
Szenario 1b:

- DC Abzweige
- AC Kunden
- PV, EV angeschlossen auf DC


Heute umsetzbar Punktuell wirtschaftlich für sehr lange Stiche z.B. in Finnland praktiziert

Experimentelle Umsetzung in HYPERRIDE (Terni, EPFL Campus)

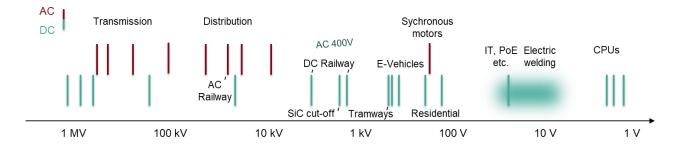
Szenario 2:


- DC Abzweige
- DC Kunden

Zukunftsszenario mit DC auf Netzseite UND Kundenanlage

BEISPIELRECHNUNG Zukunfts-Szenario 2

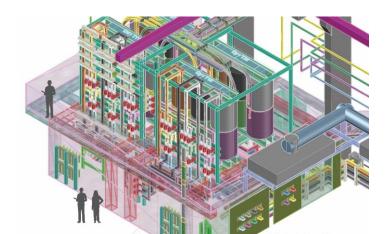
- AC 30% PV and 80% EV
- AC/DC 30% PV and 80% EV


Parameter	unit	Default value	Range	Description
CAPEX VSC	€/kW	150	100-500	Installation costs of converter per Watt
CAPEX rural line reinforcement	€/m	50	30-120	Installation costs for rural AC line reinforcement
CAPEX urban line reinforcement	€/m	100	30-120	Installation costs for urban AC line reinforcement
VSC life cycle	A	20	10-50	Expected lifetime of converter in LVDG installation
System life cycle	А	40	10-100	Expected system life cycle
OPEX VSC	%	2	0-5	Operation costs of VSC per year in % CAPEX
OPEX line reinforcement	%	1	0-5	Operation costs of line per year in % CAPEX
Energy price	Ct/kWh	4.44	0-10	Energy price for industry customers

Nina Fuchs, Gerhard Jambrich, Helfied Brunner: "Simulation Tool for techo-economic analysis of hybrid AC&DC Low Voltage Distribution Grids", CIRED 2021, Main Session 5, to be published

SCHLUSSFOLGERUNGEN

- DC ist eine sich entwickelnde Schlüsseltechnologie für die Energiewende
- Vielschichtigkeit des Thema
 - Unterschiedliche Anwendungsfälle
 - Breites Spektrum der Spannungsebenen
 - Weltweit unterschiedliche Ausgangsbedingungen
- Österreichische Industrie adressiert Weltmarkt
- Umsetzung in AT zu erwarten wo Investitionen sich über Effizienzgewinn rechnen
- DC kein Ersatz für AC-Infrastruktur, aber zunehmend Option für Neuinstallationen
- Österreichische Aktivitäten bündeln und in Europäische Aktivitäten einbringen



AIT DC LABORAUSBAU

Höhere DC-Prüfströme

- DC 100 kA range / 3s (Surge Tests)
 @ 150 MVA / Voltage Range 400 V 3000 V
- DC 5 kA / Continuous (Temperature Rise Tests) @ 4 MVA

WEITERE INFORMATIONEN

- Veröffentlichung HYPERRRIDE Ergebnisse/Public auf: EC Cordis Plattform, Zenodo (DOI), Github (Code)
- HYPERRIDE Newsletter (demnächst Registrierung über hyperride.eu möglich)
- Weitere Projektkommunikation: ResearchGate, OpenAIRE(EC), Linkedin, Twitter (Links hyperride.eu)
- HYPRRIDE External Advisory Board: Angela Berger (Smart Grids Austria)
- CIRED Konferenz 2021 (21.-23.9.2021):
 - Round Table 1 DC Networks (Convener G. Jambrich, AIT): HYPERRIDE MVDC Breaker tests,...
 - Main session 5 Oral Presentation "Simulation tool for techno-economic analysis of hybrid AC/DC low voltage distribution grids", Nina Fuchs, et.al., AIT (paper 450)

THANK YOU!

AIT Austrian Institute of Technology – Center for Energy Friederich Kupzog friederich.kupzog@ait.ac.at www.ait.ac.at/energy

Table 4: Simulation parameter.

Parameter	unit	Simu Params	Range	Description	
Grid model	-	w/	w/ or w/o	Synthetic grid model w/ or w/o equiv. loads	
LV feeder	-	1-5 rur. 1-5 urb.	1-5 rur. 1-5 urb.	LV feeder selection (rural and urban) for conversion to DC	
DC voltage	V	1400	100-1500	LVDC voltage level	
DC config	-	bipolar	unipolar bipolar	DC system configuration	
Load scaling factor	-	1,3	0.1-5	Model heat pumps or additional customers	
Load eff. gain	%	10	0-30	Household load efficiency gain if connected to LVDC	
PV	%	30	0-100	PV penetration (Fn. of nr. of loads)	
PV eff. gain	%	1	0-30	PV efficiency gain if connected to LVDC	
EV	%	80	0-100	EV penetration (Fn. of nr. of households)	
EV eff. gain	%	1	0-30	EV efficiency gain if connected to LVDC	
AC topology	-	radial	radial meshed	Topology for AC LV grid	
DC scenario	-	2	1a/1b/2	AC/DC hybrid scenario	
VSC1 eff	-	0.98	0.6-1	VSC 1 efficiency	
VSC2 eff	-	-	0.6-1	VSC 2 efficiency (only applies to scenario 1)	
VSC rated power ratio	-	0.9	0.5-1.2	VSC rated power (ratio of max. feeder S_{In_max} / max. household load S_{load_max} for VSC2)	

Table 2: Detailed LV feeders in synthetic grid model.

Feeder	Max Length [m] Nr of line	es Nr of loads
LV rural 1	1056	26	16
LV rural 2	430	22	14
LV rural 3	549	30	17
LV rural 4	610	34	22
LV rural 5	220	2	1
LV urban 1	430	28	25
LV urban 2	370	22	19
LV urban 3	360	30	26
LV urban 4	400	34	31
LV urban 5	450	21	19