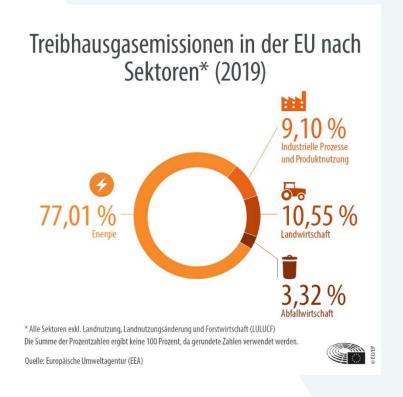
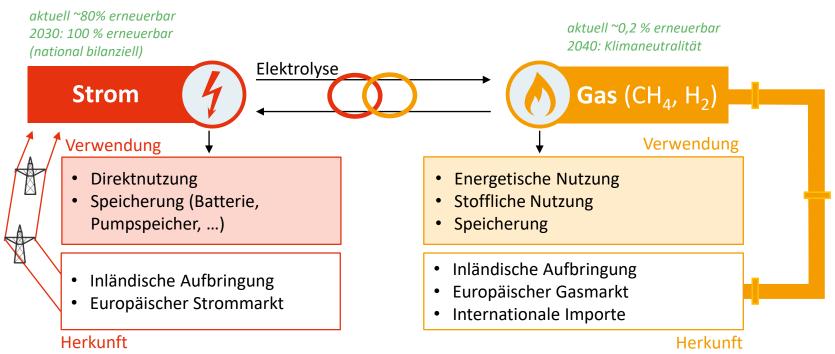

Integrierter österreichischer Netzinfrastrukturplan (ÖNIP)


Strom- und Gasnetze gemeinsam denken

Julia Grohs
Abt. VI/2 – Strategische Energiepolitik
Salzburg, 25.09 2023 – Workshop "Energiesysteme im Umbruch XI"

Agenda

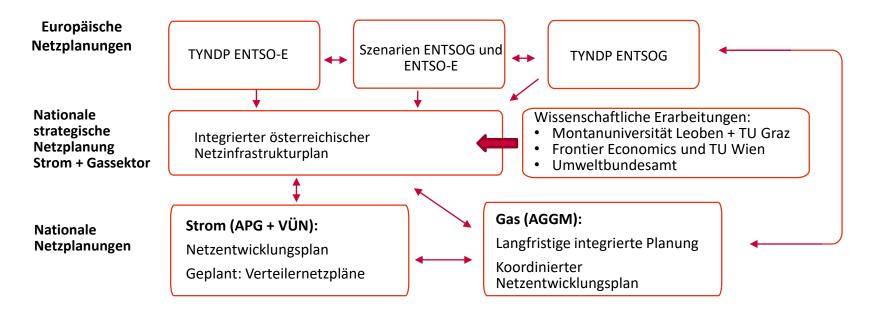

- Ausgangssituation und Ziele Integrierter österreichischer Netzinfrastrukturplan (ÖNIP)
- Erstellungsprozess und Methodik
- Zukünftige Energienachfrage und –erzeugung
- Integrierte Netzinfranfrastrukturplanung

Wir brauchen erneuerbare Energie!

Energiezukunft: Strom und Gas, beides wird klimaneutral

Integrierte Infrastrukturplanung für ein klimaneutrales Österreich

Übergeordnetes, strategisches Planungsdokument für die künftigen Anforderungen an unser Energiesystem


Ziele:

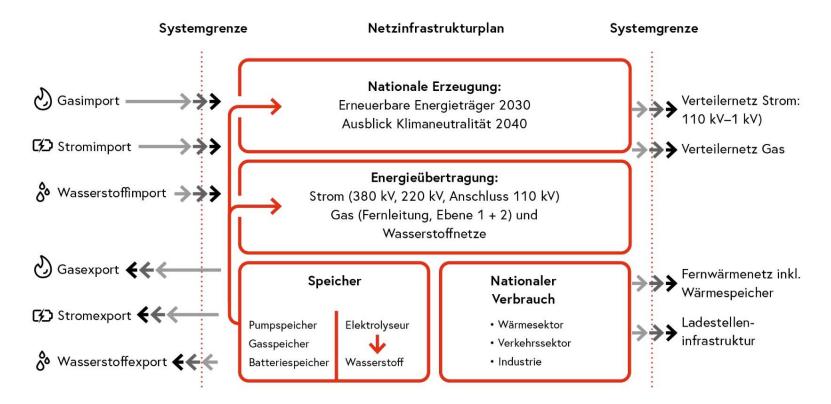
- 2030: 100 % erneuerbarer Strom (national bilanziell)
- 2040: Klimaneutralität
- Berücksichtigung ökologischer Kriterien

Entscheidungsgrundlage für abgestimmte Energieraumplanung

Beginn eines vertieften Austausches zur strategischen Energieinfrastrukturplanung

Strom- und Gasnetzplanungen

Was stellen wir im NIP nicht dar?


ÖNIP - Planung findet auf der übergeordneten Ebene statt:

- Detailplanung liegt bei den zuständigen Behörden und Netzbetreibern
- Keine Ausweisung von Flächen für den Ausbau von Erneuerbaren
- Keine Planung auf Projektebene

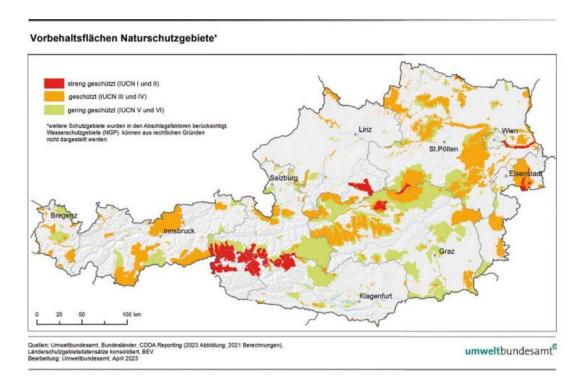
ABER:

Systemische und integrierte Gesamtbetrachtung als wichtige Basis für die detaillierte und abgestimmte Energieraumplanung

Zukünftiger Energieverbrauch und die Rolle von Strom

- Elektrifizierung von Sektoren:
 - Verkehr
 - Wärme
 - Industrie
- Energieeffizienz

Energie bilanz (2020)	Szenario Transition (2030)	Szenario Transition (2040)
71	93	125
85	38	0
2	7	11
0	5	29
	bilanz (2020) 71 85	bilanz (2020) (2030) 71 93 85 38 2 7

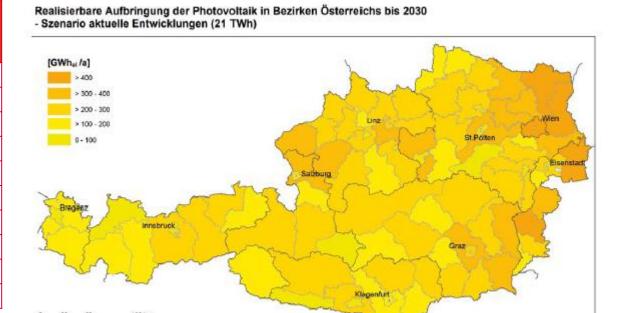

Sinkender Gesamtenergieverbrauch bei steigendem Stromverbrauch

Angenommene erneuerbare Produktion in 2030 und 2040

Technologie	2020	2030	2040
Windkraft	7 TWh	21 TWh	29 TWh
Photovoltaik	2 TWh	21 TWh	41 TWh
Wasserkraft	42 TWh	47 TWh	48 TWh
Strom aus Biomasse	5 TWh	6 TWh	6 TWh
Biomethan	2 TWh	7 TWh	11 TWh
Wasserstoff	0 TWh	3,5 TWh	11 TWh

Potenziale Photovoltaik und Windkraft - Ausschlussflächen

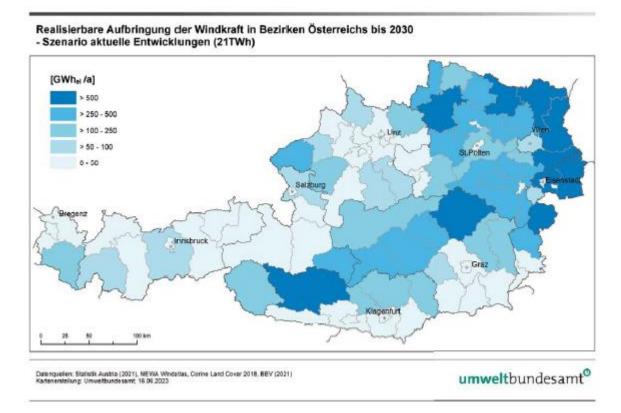
Photovoltaik

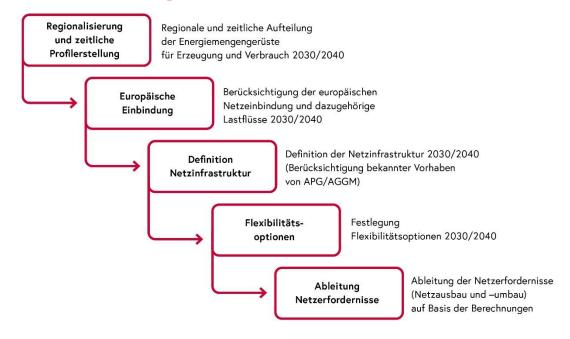

Quelle: JRC Globalstrahlung, Basemap Gebäude (Bundesländer),

Bearbeitung: Umweltbundesamt, 16.06.2023

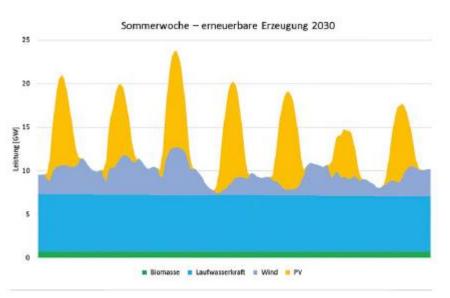
Dauersiedlungsraum (Statistik Austria), eigene Berechnungen, Verwaltungsgrenzen (BEV)

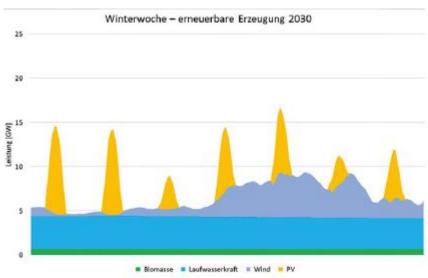
Solarkatester Klimten (Land Kämten), Corine Landoover 2018, DKW (BEV), GIP Straßengraph, Lännschutzwände (BWK),


PV in TWh/a	Angenommene Erzeugung (2030)
Burgenland	2,5
Kärnten	1,7
Niederösterreich	5,6
Oberösterreich	3,8
Salzburg	1,1
Steiermark	3,3
Tirol	1,5
Vorarlberg	0,5
Wien	1
Österreich	21


umweltbundesamt®

Windkraft

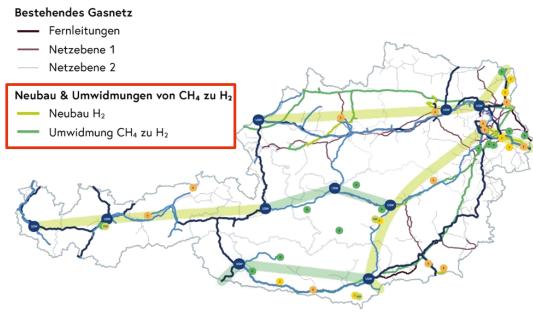

Wind in TWh/a	Angenommene Erzeugung (2030)
Burgenland	5,2
Kärnten	1,1
Niederösterreich	10
Oberösterreich	1
Salzburg	0,5
Steiermark	2,8
Tirol	0,3
Vorarlberg	0,1
Wien	0,1
Österreich	21,1



Methodik zur Ableitung der Netzerfordernisse

Stundenbasierte Stromerzeugungsprofile

Integrierter Infrastrukturplan 2030



Zusätzliche Transportbedarfe

220 kV 380 kV

Stromtransportbedarfskorridor (Leitungsverstärkung bereits eingeleitet) Stromtransport-

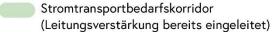
bedarfskorridor

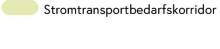
Strom

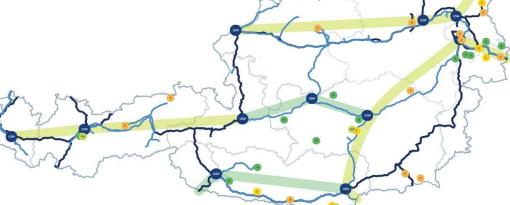
Strom – Identifizierte Transporterfordernisse 2030

Hybride Elemente & Batteriespeicher

- PtH-Kandidaten
- Batterie-Kandidaten
- Elektrolyseur-Kandidaten
- angekündigte Elektrolyse-Projekte


Bestehendes Stromnetz


USW-Knoten


220 kV 380 kV

2030

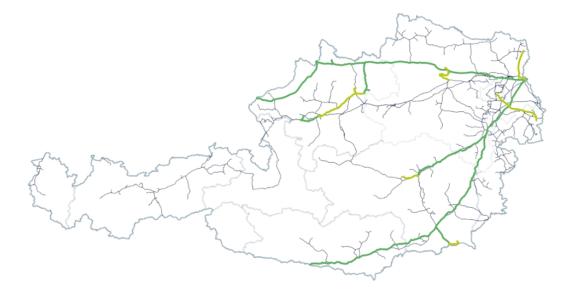
Zusätzliche Transportbedarfe

Strom

Ergebnisse Übertragungsnetzinfrastruktur

- Bedarf an einem resilienten "erneuerbarem Verbundsystem Österreichs" durch ein dicht verbundenes Höchstspannungsnetz
- Dadurch wird ermöglicht:
 - Erschließung der hohen erneuerbaren Erzeugungspotenziale im Osten
 - Optimierte Nutzung der vorhandenen Speicherkapazitäten (Pumpspeicherkraftwerke) im Westen
 - Einbettung Österreichs in das europäische Verbundsystem

Methan & Wasserstoff – Identifizierte Transporterfordernisse 2030



- Neubau (H₂)

Umwidmung (CH₄ zu H₂)

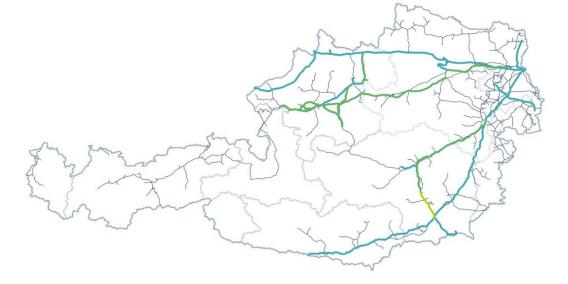
Bestandsnetz 2030

— CH₄

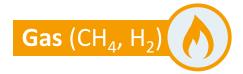
2030

Methan & Wasserstoff – Identifizierte Transporterfordernisse 2040

Neubau & Umwidmungen von CH₄ zu H₂ ab 2030 bis 2040


- Neubau (H_2)

Umwidmung (CH₄ zu H₂)


Bestandsnetz 2040

— Н2

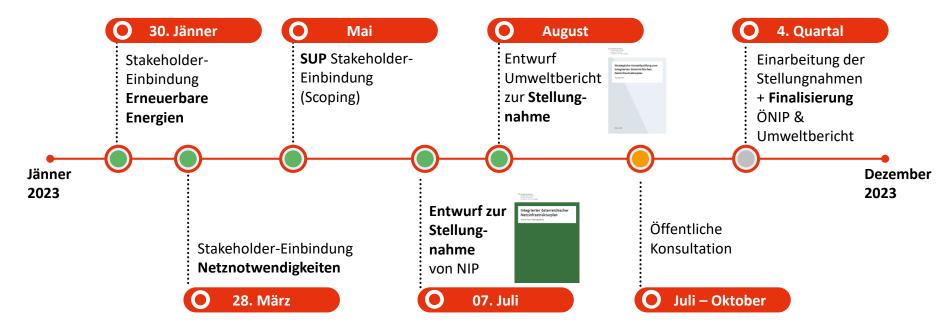
— CH₄

Ergebnisse Methan- und Wasserstoffinfrastruktur

 Anpassung der Gasinfrastruktur für einen wachsenden Bedarf an grünem Wasserstoff bei gleichzeitig sinkendem Methanbedarf:

Zukünftige Wasserstoff- und Methantransportinfrastruktur:

- Dezidiertes Wasserstoffnetz
- Umwidmung von einzelnen Strängen der Fernleitungsebene (WAG + TAG) und Netzebene 1 zur Anbindung großer Industriezentren
- Durch die Umwidmung bestehender Parallelstrukturen wenig Bedarf an Neubau von Wasserstoffleitungen
- Anpassung Methannetz vom "Verteilernetz" zur Erschließung der nationalen Biomethanpotenziale "Sammelnetz"


Klimakrise und Biodiversitätskrise, gemeinsam betrachten

- Energieeffizienz
- Umweltverträglicher Ausbau der benötigten Energieinfrastruktur
- Strategische Umweltprüfung zum ÖNIP:
 - Prüfung der voraussichtlich erheblichen Umweltauswirkungen (positiv + negativ)
 - Gewisse Umweltauswirkungen auf übergeordneter Ebene erkennen und berücksichtigen
 - Darstellung von Aspekten, die in nachfolgenden Genehmigungsverfahren vertiefend zu prüfen sind

Erstellungsprozess ÖNIP (2023)

Entwurf:

https://www.bmk.gv.at/themen/energie/energieversorgung/netzinfrastrukturplan.html

Danke für Ihre Aufmerksamkeit!

Julia Grohs
Abt. VI/2 – Strategische Energiepolitik
julia.grohs@bmk.gv.at